Effects of size and surface on the auxetic behaviour of monolayer graphene kirigami
نویسندگان
چکیده
Graphene is an active element used in the design of nano-electro-mechanical systems (NEMS) owing to its excellent in-plane physical properties on mechanical, electric and thermal aspects. Considering a component requiring negative Poisson's ratio in NEMS, a graphene kirigami (GK) containing periodic re-entrant honeycombs is a natural option. This study demonstrates that a GK with specific auxetic property can be obtained by adjusting the sizes of its honeycombs. Using molecular dynamics experiments, the size effects on the auxetic behaviour of GK are investigated. In some cases, the auxetic difference between the hydrogenated GK and continuum kirigami (CK) is negligible, in which the results from macro CK can be used to predict auxetic behaviour of nano kirigami. Surface effect of GK is demonstrated from two aspects. One is to identify the difference of mechanical responses between the pure carbon GK and the hydrogenated GK at same geometry and loading condition. Another is from the difference of mechanical responses between the GK model and the CK model under same loading condition and geometric configuration. Generally, surface energy makes the GK possess higher variation of auxetic behaviour. It also results in higher modulus for the GK as comparing with that of the CK.
منابع مشابه
Wettability of boron monolayer using molecular dynamics simulation method
Over the past years, two-dimensional materials such as graphene, phosphorene, silicene, and boron-nitride have attracted the attention of many researchers. After the successful synthesis of graphene, due to its many new applications, researches began to produce nanosheets from other elements, and among these elements, boron was one of the options. In the periodic table of elements, boron is ahe...
متن کاملNegative Poisson's ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides
Materials with a negative Poisson's ratio, also known as auxetic materials, exhibit unusual and counterintuitive mechanical behaviour-becoming fatter in cross-section when stretched. Such behaviour is mostly attributed to some special re-entrant or hinged geometric structures regardless of the chemical composition and electronic structure of a material. Here, using first-principles calculations...
متن کاملAtomistic simulations of tension-induced large deformation and stretchability in graphene kirigami
Graphene’s exceptional mechanical properties, including its highest-known stiffness (1 TPa) and strength (100 GPa), have been exploited for various structural applications. However, graphene is also known to be quite brittle, with experimentally measured tensile fracture strains that do not exceed a few percent. In this work, we introduce the notion of graphene kirigami, where concepts that hav...
متن کاملSynergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line
Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...
متن کاملVibration and Buckling of Double-Graphene Sheet-Systems with an Attached Nanoparticle Based on Classical and Mindlin Plate Theories Considering Surface Effects
Vibration of double-graphene sheet-system is considered in this study. Graphene sheets are coupled by Pasternak elastic medium. Classic and Mindlin plate theories are utilized for modeling the coupled system. Upper sheet carries a moving mass. Governing equations are derived using energy method and Hamilton’s principle considering surface stress effects and nonlocal parameter. Using Galerkin m...
متن کامل